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Abs~aet--This paper reports an experimental study of the motion of dissolving and non-dissolving gas 
bubbles in a quiescent viscoelastic fluid. The objective of the investigation was to determine the influence 
of the abrupt transition in bubble velocity, which had been observed at a critical radius of approx. 0.3 cm, on 
the rate of mass transfer. Thus, a range of bubble sizes from an equivalent (spherical) radius of 0.2-0.4cm 
was employed using CO2 gas, and five different fluids, including one Newtonion glycerine/water solution 
and four viscoelastic solutions of Separan AP30 in water (0.1, 0.5, 1% by weight) and in a waterlglycerine 
mixture. 

The experimental data on bubble velocity shows that the discontinuous increase with bubble volume 
observed previously for air bubbles in viscoelastic fluids, does not occur for dissolving CO2 bubbles-- 
presumably due to the continuous decrease in bubble volume. Instead, a very steep but definitely 
continuous transition is found. Mass transfer rates are found to be significantly enhanced by viscoelasticity, 
and comparison with available theoretical results shows that the increase is greater than expected for purely 
viscous, power-law fluids. We conclude that a fully viscoelastic constitutive model would be necessary for a 
successful analysis of the dissolution of a gas bubble which is translating through a (high molecular weight) 
polymer solution. 

A. INTRODUC TION 

One of the most important problems of non-Newtonian fluid dynamics is the buoyancy-driven 
translational motion of gas bubbles through viscoelastic materials such as polymer solutions 
and melts. From the technolgical point of view, of particular interest is the application of the 
basic physical principles to the design and operation of gas-liquid contact mass-transfer 
equipment. However, even from a purely fundamental point of view, the motion of a single gas 
bubble is interesting as an example of a strongly non-viscometric flow which exhibits major 
macroscopic differences from its Newtonian counterpart. A detailed investigation of such 
problems is important to the gradual build-up of basic understanding of the mechanics of fully 
viscoelastic fluids. 

Among the various phenomena which are exhibited by a gas bubble in a viscoelastic fluid 
perhaps the" most striking is the existence of an abrupt (discontinuous) transition in terminal 
velocity of the bubble when measured as a function of the bubble volume. This transition was 
first reported by Astarita & Apuzzo (1965), who found a sixfold increase in bubble velocity at 
the critical bubble volume for a 0.5% solution of the commercial J-100 polymer. Similar results 
have more recently been reported by Calderbank et al. (1970) in 1% Polyox solutions and by 
Leai et al. (1971) in solutions of the commercial polymer, Separan AP30. 

Most investigators who have studied the problem agree that the basic cause of the change in 
bubble velocity is a transition in conditions at the bubble surface from no-slip to a free (zero 
shear stress) surface regime, as was first suggested by Astarita & Apuzzo (1965). This 
transition is equivalent to the weU-known change from the Stokes to Hadamard regime in a 
Newtonian liquid, and so, in itself, is not too surprising. Indeed, Leal et al. (1971) showed 
experimentally that bubble velocities for volumes less than the critical volume are precisely 
equal to those measured for equal volume glass spheres provided suitable density corrections 
are made. Furthermore, the glass spheres showed no transition in terminal velocity. Taken 
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together, these observations provide strong indirect evidence to support the contention that ~ 
change in surface conditions is responsible for the observed velocity transition in the case of gas 

bubbles. In contrast, however, it is not yet clear why the boundary-condition transition should 
occur so abruptly in the viscoelastic case, or for such large bubbles ( re-0 .3  cm), when the 
Newtonian transition is known to occur for much smaller bubbles and smoothly as a function of 
bubble size. Furthermore, the magnitude of the change in terminal velocities is much bigger tas 
much as a factor of 6 or 10) in the viscoelastic case than in the Newtonian case (where the ratio 
at equal volumes is known theoretically to be approx. 3/2 for nearly spherical shapes) and n o  

satisfactory explanation has yet been offered for this fact either. Astarita & Apuzzo (1965) did 
suggest correctly (in our view) that the magnitude of the transition was prgbably due, in some 
way, to'the viscoelastic nature of the suspending fluid. However, Astarita & Apuzzo's further 
suggestion that the magnitude could actually be explained by considering only purely-viscous, 
shear-thinning effects (i.e. neglecting elasticity or normal stresses) was shown to be incorrect by 
Leal et al. (1971) who studied the effect of shear-dependent viscosity, in the absence of 
viscoelastic effects, using numerical methods with an empirical, purely-viscous fluid model. 
Calculations of the terminal velocities for non-circulating, partially circulating, and fully 
circulating spherical bubbles at the measured critical volume showed that shear-thinning alone 
could not possibly account for more than 30% of the measured magnitude of the velocity 
transition. However, it was also shown, by simple qualitative arguments, that a relatively small 

effect of elasticity on the bubble drag could be sufficient to account for the much larger 
measured velocity increase, if the drag were reduced by elastic effects in both the pre- and 
post-transition regimes, but with a somewhat greater reduction in the latter case. 

An initial test of the viability of this latter argument was made by the present authors (see 
Zana 1975; Leal & Zana 1974) using "slow-flow" asymptotic solutions, based on the 6-constant 
Oldroyd (1958) fluid model, to compare the viscoelastic contributions to the drag on a rigid 
no-slip sphere and on a freely circulating spherical bubble of the same volume. The rigid sphere 
result was taken from Leslie (1961). The solution for the case of a spherical bubble was 
obtained by Zana (1975). In the limit corresponding to a constant shear viscosity it was shown 
that the drag is increased in both cases compared to the Newtonian value at second order, 

0(We2), in the retarded motion expansion. Significantly, however, the decrease is much more 
pronounced for the bubble than for the rigid, no-slip sphere. Thus, the "slow flow" viscoelastic 
approximation offers strong preliminary evidence to support the proposition of Leal et aL 

(1971). 
From a more fundamental viewpoint, the problem of explaining the magnitude of the 

velocity transition requires a mechanism to account for much stronger influence of the surface 
boundary conditions with viscoelastic fluids, as compared to Newtonian fluids where the 
terminal velocity ratio is approx. 3/2. We believe that the answer must lie in the fundamentally 
different types of flow generated near a bubble and near a rigid sphere. In the latter case, the 
no-slip condition causes the local disturbance flow near the sphere to be largely a simple shear 
flow, subject to shear thinning. For the bubble, however, the surface is free, and the local 
disturbance flow is then dominated by extensional and compressional deformations. To relate 
these observations to a quantitative discussion of the magnitude of the transition, further 

theoretical effort is necessary to obtain (numerical) solutions for the flow past spherical bodies 
which are not restricted to "slow" (nearly Newtonian) flows. 

The primary objective of  the present work is more nearly an assessment of the technological 
significance of the transition, than an attempt to provide any further explanation of its existence 
or its form. In particular, we will consider the mass transfer characteristics of a single bubble in 
the transition regime. With the exception of one data set for CO2 in a 1.0% solution of Polyox in 
water by Calderbank et al. (1970), no attention has yet been given to the influence of the 
velocity transition on mass transfer. Indeed, very little work has apparently been done on 
bubble mass-transfer in viscoelastic fluids for any regime. In the present investigation, we 
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report experimentally determined rates of mass transfer for single gas bubbles in a viscoelastic 
liquid. In order to assist in data interpretation, we have also repeated some of the earlier 
measurements of shape and terminal velocity, with particular emphasis on the differences 
between dissolving and non-dissolving bubbles. The terminal velocity behavior does provide 
some further insight into the abruptness of the velocity transition which was reported in earlier 
studies. In addition to providing a more extensive correlation of mass transfer rates and 
theological properties of the suspending fluid, the present study also differs fundamentally from 
the earlier work of Calderbank (1970) in the method of measurement. In Calderbank's work the 
bubble volume is held constant and the internal gas concentration goes down, while in the 
present work the bubble volume changes freely as the mass transfer process proceeds. 

B. DIMENIONAL ANALYSIS AND THEORETICAL BACKGROUND 

An important initial step in the design and interpretation of the mass-transfer experiments is 
a determination of the physical and theological parameters which will play a fundamental role 
in the bubble dynamics and mass-transfer processes. This is most easily accomplished by 
dimensional analysis based on the governing differential equations and boundary conditions. It 
is convenient to begin by considering the purely dynamical problem of a bubble of constant 
volume translating with a fixed velocity through a viscoelastic fluid. For present purposes, the 
precise form of the constitutive model is not critical. The natural characteristic variables for 
non-dimensionalization are the radius of a sphere with the same volume as the bubble (which 
may be deformed), Rea, the steady, terminal velocity of translation, U®, and the characteristic 
stress, lzU®/I~q. Wittt these choices, the parameters which appear in the dimensionless 
equations of motion and continuity are the Reynolds number, Re -- 2ReqUdv; the Weissenberg 
number based on the principal relaxation time of the fluid, W e -  U.AllI~q; and a series of 
ratios of the intrinsic time constants of the constitutive model. Although Re and We can vary 
widely (0 < Re < oo, 0 < We < oo), these ratios of dimensionless time constants are generally of 
order unity and vary relatively little from fluid to fluid. This means that any qualitative 
discussion of bubble dynamics in a viscoelastic fluid can focus on the magnitudes of the 
Reynolds number and the Weissenberg number plus any additional parameters which may 
appear in the boundary conditions. In the simplest circumstances, it is only the surface tension 
which is important, and then only as a parameter which controls bubble shape. While the details 
of motion are certainly influenced by the shape, the main features of viscoelastic flow past a 
bubble are determined by the nature of the fluid and are the same for any shape which is not 
too far removed from spherical. For purposes of the present discussion, it is thus convenient to 
consider the roles of inertia, viscous and "elastic" forces for a bubble of fixed (spherical) shape. 

In general terms, the Reynolds number is a measure of the ratio of inertia to viscous forces, 
the Weissenberg number a measure of the ratio of elastic to viscous forces, and We/Re a 

measure of the ratio of elastic to inertia forces. Several distinct regimes are thus possible, 
depending upon the relative magnitudes of Re and We. For low Reynolds number, the flow 
characteristics are determ'ined by a balance between elastic and viscous/pressure forces. In this 
re#me, the important parameter is thus We and the rheoiogical properties of the suspending 
fluid generally play a significant role. However, as the bubble volume is decreased, U decreases 
(in every case known to us) at a rate proportional to Rea m with m > I. Thus, in such cases the 
Weissenberg number, We ~ O, and the purely viscous effects eventually dominate the dynamics 
for sufficiently small bubbles. The fluid motion in this regime is then expected to be identical 
with that in a Newtonian fluid with equivalent viscosity. As the bubble volume is increased 

elastic contributions become more important; however, so do inertia effects, and the important 
parameter is We/Re. Eventually, for even larger bubbles, We/Re ~ O, and the fluid motion is 
dominated by inertia effects everywhere in the flow domain. This is quite different from the case 
of high Reynolds number flow past a solid body where the viscous and elastic effects always 
remain important in a thin layer near the body, and is a consequence of the surface boundary 
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conditions which require zero tangential stress rather than zero tangential velocity. In this 
inertia dominated regime the flow characteristics are expected to be completely independent of 
the fluid rheology. 

Let us now return, briefly, to the bubble shape. In general, the bubble will be more or less 
deformed from a sphere depending upon the relative magnitude of inertia or elastic forces and 
the tensile surface forces. At small Re, it is the elastic forces balanced with surface forces 
which determine the shape, and we conclude that the pa/ameter 

lZU~o. We=-(--~e) We 

is important. Here, Wb is the Weber number, defined as Wb ~ pR~qU®2/o,. On the other hand, at 
large Re, it is the inertia/surface force balance which determines the bubble shape, and thus Wb 
alone is the significant independent parameter. In the latter case, the bubble shape is expected 
to be completely independent of the rheologicai properties of the suspending fluid. 

We have suggested that the fluid dynamical effects of viscoelasticity can be mainly 
accounted for by consideration of the magnitude of the Re and We numbers. One difficulty with 
this approach is that none of the generally accepted constitutive models for viscoelastic liquids 
is capable of modelling purely-viscous fluids (such as CMC solutions) which exhibit strong 
shear thinning, but no other measurable manifestation of viscoelasticity. In general, to reduce 
elastic effects we would naturally consider the limit We ~ O, but in existing models this has the 
simultaneous effect of reducing the degree of shear-thinning. It is thus necessary to have some 
alternative means of specifying the degree of shear-thinning independently of the magnitude of 
elastic effects. A convenient, if ad hoc, approach is to use a simple power-law model 

r 1 , ( n -  1)/2"., 

to provide a second rheological parameter, n, which is capable of reflecting the degree of 
shear-thinning independently from the degree of elasticity as measured by We. 

In the presence of mass transfer, the equations of motion and continuity must be supple- 
mented by the convective-diffusion equation for the dissolving material. Coupling between the 
fluid dynamics and the mass transfer process occurs in at least three ways. First, the velocity 
field enters directly into the convection terms in the convective-diffusion equation. Second, 
since material is being transferred either from or to the bubble, its volume will change, thus 
inducing a time dependent normal velocity in the vicinity of the bubble surface. Third, as the 
bubble volume changes, both the buoyancy force and the bubble velocity will vary continuously 
with time. All of these effects must be taken into account in any general analysis of the bubble 
mass transfer process. 

If a characteristic time, R~q/D, is used to define a dimensionless time scale /-= t/(R~qlD), 
and the time-dependent govering equations are again nondimensionalized, one new parameter 
enters the system, namely, the Peclet number, Pe~ U~ReJD. The Peclet number is a 
measure of the relative magnitude of the convection terms compared with diffusion and 
time-dependent terms in the convective-diffusion equation. The characteristic time Req21D, is 
chosen since the time-dependence of the bubble motion is completely due to the diffusion- 
induced change in the bubble volume. Peclet number may thus be seen to also provide a 
measure o[ the instantaneous velocity o[ rise o[ the bubble compared to the normal velocity 
induced at the bubble surface by its change in volume. Depending on the magnitude of the 
Peclet number, two distinct limiting cases can be identified. 

When Peclet number is large (Pe >> 1), the velocity field is dominated by the free streaming 
motion which is due to the buoyancy-driven bubble rise. The induced velocity due to bubble 
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collapse is, in this limit, asymptotically small. Thus to a first approximation, the equations of 
motion and continuity may be solved without consideration of the mass-transfer process. The 
only effect of the fluid rheology on mass transfer is an indirect result of its effect on the velocity 
field which must be used to evaluate the convection terms in the convective-diffusion equation. 

For small values of the Peclet number the velocity field is dominated by the motion induced 
by the bubble collapse, and the mass-transfer problem reduces at first order to the dissolution 
of a stationary gas bubble in a quiescent, viscoelastic fluid. In this case, the viscoelastic 
properties of the fluid are of direct significance. Indeed, the high stresses, which occur in a 
viscoelastic fluid as a result of the extensional motions which are induced by the bubble 
collapse, can inhibit the collapse rates to such an extent that the whole mass-transfer process is 

controlled by the fluid rheoiogy. 
In an earlier paper, Zana & Leal (1975) we analyzed the dependence of mass-transfer rate on 

the rheological properties of the suspending fluid in some detail for the latter case Pe ~ 1. The 
present experimental work is mainly concerned with the opposite limit, Pe >> 1, for bubble 
volumes which are initially near to the critical size for the velocity transition phenomenon. 

C. EXPERIMENTAL METHODS 

1. Description of the apparatus 
A schematic diagram of the apparatus used in the experiments is shown in figure 1. The 

main features are a pair of humidifying columns and an airtight test (absorption) column, a 
motor-driven camera platform with associated controls and lighting, a specially designed bubble 
release mechanism, and a pressure measuring system with associated electronics and controls. 
Of these features, all were used extensively in the present study except for the pressure system 
which is primarily intended for mass-transfer measurements in less viscous fluids where the 
bubble shape is not steady (see section C3). The purpose of the humidifying columns is to 
saturate the gas bubble with water vapor before it is introduced into the absorption column. The 
actual test (absorption) column is constructed of 1/2 to 3/4 inch Plexiglas sheet and is seven feet 
in height with a six-inch square cross section. 
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Figure I. Experimental apparatus i, CO2 gas tank; 2, Humidifying column; 3, Humidifying column; 4, 
Micro syringe (gas injection); 5, Micro syringe (liquid injection); 6, Capillary tubing; 7, Thin light beam 
source; 8, Photo transistor; 9; Turning cup; 10, Absorption column; 11, Solenoid valve; 12, Pressure 
transducer; 13, Camera platform; 14, Counter weight; 15, Motor; 16, Motor controller; 17 Camera; 18, 
Stroboscope; 19, Mirror; 20, Meter stick; 21 Narrow light slit (two of them); 22, Photo transistors (two); 23, 
Microswitch; 24, Hood lamp; 25, Bleed valve; 26, Pressure transducer indicator; 27, Magnetic sensor 
amplifier; 28, Digital voltmeter; 29, Stir-light control relay; 30, Variac; 31, DC power supply for camera 
motor; 32, Platform control circuitry; 33, Velocity measuring circuitry; 34, Digital counter; 35, 4-channel 

recorder. 
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Measurements of bubble velocity, bubble shape and instantaneous mass transfer rates, as 
well as streakline flow visualization, are all carried out near the mid-line of the colunm where 
flow transients and other effects are minimized. 

The velocity of bubble rise was initially measured by simple multiple-image photography 
following Leal et al. (1971), and this approach was adequate for the dynamics experiments. 
However, in correlating mass-transfer data it was found that a more reproducible and reliable 
method was needed in order to minimize scatter. Hence, a simple system was designed in which 
bubble velocities could be measured automaticallyand accurately using a combination of two 
phototransistors with associated pencil-line light sources and an electronic counter. When the 
bubble passes the lower phototransistor, a pulse is generated which activates the electronic 
counter. A second pulse, generated by the second phototransistor, stops the counter which thus 
provides an accurate measure of the elapsed time between pulses. From this time, and the 
known distance between the phototransistors, the velocity of bubble rise may be calculated. 
The system is extremely reproducible provided that the bubble shape and motion does not 
exhibit any oscillating character, and the system is carefully aligned. 

2. Bubble formation and release mechanism 

Poor design of the bubble release mechanism has been one of the major factors in the lack 

of consistency between mass-transfer data obtained by different investigators. An example of 
the potential difficulties are wild oscillations of shape, or local turbulence, created during the 
release process which have contributed to an apparent age dependence of mass-transfer rates, 
cf. Deindorfer & Humphrey (1961). 

There are two distinct types of bubble formation and release mechanisms which have been 
used extensively. For small bubbles almost all of the previous investigators used glass (metal) 
nozzles, orifices or hypodermic needles (cf. Haberman& Morton 1953). Larger ones were 
exclusively created by a turning cup (Peebles&Garber 1953; Leonard&Houghton 1963; 
Calderbank & Lochiei 1964; Leal et al. 1971). Despite criticism, the turning cup technique still 
remains the most reliable way of producing single large bubbles. Zieminski & Raymond (1968, 
1971) used a capillary tube techmque which was credited with yielding more reproducible 
results. With this method however, it was not possible to produce bubbles larger than 0.25 cm 3. 

In the present work both the capillary tube and the turning cup are used for different ranges 
of bubble sizes. Figure 2 shows the capillary tube release mechanism in more detail. The 
capillary tube has a nominal diameter of 2 mm, but is enlarged to 4 mm at its upper end. CO2 gas 
is introduced into the tube by a hypodermic needle and is pushed out by a micro syringe filled 
with the same liquid that is in the absorption column. The enlargement of the tube at its upper 
end allows the bubble to assume a form close to its final shape before it leaves the tube, thus 
minimizing initial oscillations in shape. With a smooth, slow release we have also found that the 
bubble path upward through the column is extremely reproducible, a critical prerequisite to 
accurate flow visualization. The turning cup mechanism used for large bubbles is not as reliable, 
but because of the relatively high viscosities of the test fluids, the initial disturbances do damp 

out relatively quickly. 

3. Mass-trans[er measurements 
In order to determine the instantaneous rate of mass transfer from a bubble rising through a 

quiescent liquid, it is necessary to measure its instantaneous volume, surface area and pressure. 
All of the current methods use photographs to determine the surface area. However, they do 
differ in the method of measuring bubble volume. Two basic techniques have been employed. 
The simplest is to estimate the rate of change of bubble volume from the same photographs as 
are used tO determine surface area. With care, this method can yield reasonable results 
provided the ambient liquid is quite viscous so that the bubble shape is simple and exhibits no 
oscillations. The alternative approach, which is particularly useful when the bubble shape is 
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Figure 2. Bubble release mechanism. 1, Graduated capillary tube; 2, Bottom plate of the absorption 
column; 3, Screws to hold the seal plate: 4, Seal plate; 5, Gas jet; 6, Purge line; 7, 3-way valve; 8, Liquid 

reservoir line; 9, Carbon dioxide line; 10, Graduated gas syringe; i L  Liquid Syringe. 

neither simple nor steady, is to determine the change in bubble volume from an indirect 
measure of the space it occupies. A number of variations on this basic theme have been 
proposed. With the capillary method, the column is filled completely with liquid and the system 
is open to the atmosphere only through a small capillary tube. The change in bubble volume is 
correlated with the motion of the meniscus of the liquid in the capillary. The chief difficulty 
with this method is the delay in response of the capillary fluid due to viscous (viscoelastic) 
effects. A similar method, in spirit, is the constant-volume system used by.Caiderbank et al. 
(1970). Here the column is completely filled with liquid, closed to the atmosphere and the 
mass-transfer rate determined by measuring the (uniform) pressure inside the column. The 
bubble volume is, of course, constant assuming that the surrounding fluid is incompressible and 
the column rigid. Although we can clearly obtain an accurate measure of volume (and surface 
area) with this method, the mass-transfer rate will be relevant, in general, only if the system for 
which the data are to be applied is also a completely closed and ~lled system. Otherwise, and 
especially for viscoelastic liquids (see the discussion of the preceding section) the extensional 
flow induced by the change in bubble volume can produce s~gnificant differences in mass- 
transfer rates. Indeed, for small Pe numbers we have shown in a previous paper (Zana & Le.al 
1975) that the whole mass-transfer process can be controlled by the rheologically imposed 
restrictions on the maximum rate of bubble collapse. Even for large Pe the present experiments 
will show that the collapse process can play a fundamental, and in this limit, somewhat 
unexpected role in the mass-transfer process, giving measurably different rates of mass transfer 
depending upon whether or not the bubble volume is changing. 

A second pressure related method which does not suffer from the disadvantages of 
Calderbank's method is the so-called airspace-pressure method in which changes in bubble 
volume are detected by measuring pressure (volume) changes in a small airspace which is left at 
the top of the column. Recently Garbarini & Chi Tien (1969) presented a comparative study of 
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the airspace-pressure and photographic methods. The basic conclusion was that the photo- 
graphic method provided more reliable results when the bubbles travel in straight paths with no 
oscillations and have simple, regular shapes. 

The column which we used can be operated in either the airspace-pressure or photographic 
modes. However, the ambient fluids used in the present study were all extremely viscous and/or 
elastic, and the bubble motions and shape were very smooth and regular. Hence, all of the 
mass-transfer data which we will' describe in later sections were obtained using the simple 
photographic method. 

The photographs required to determine bubble surface area and volume were obtained using 
a Bolex H-16 motion picture camera mounted on a well-balanced moveable platform which is 
driven by a motor with an electronic variable speed controller and which can be controlled 
manually to track the bubble. The recorder and the camera were turned on just before the 
bubble was released. The camera platform was activated by the bubble itself. To achieve this, a 
light guide which sends a thin flat beam of light through the column onto a phototransistor was 
mounted on the column right above the bubble release mechanism. When the beam of light was 
partially blocked by the passing bubble, a pulse was generated by the phototransistor, which 
was amplified by a logic circuit and fed to a relay to activate the motor controller. 

In order to achieve constant and reproducible framing rates, the camera motor was run 
using a D.C. power supply. During each run the voltage input to the camera motor was 
accurately set to a value determined using a previously obtained calibration between framing 
rate and voltage. In addition, the framing rate was checked periodically by an electronic 

counter, as described below. 
Illumination for the pictures was provided by two General Radio electronic stroboscopes 

which were mounted on the camera platform. The shutter of the camera was synchronized to 

the strobes by rotating a small magnet which is mounted on a shaft of the camera in front of a 
magnetic pick-up, amplifying the signal and using it to trigger the strobe once per frame. These 
signals are also counted by a digital counter for a short period of time in order to accurately 

determine the framing rate. 
In reducing the mass-transfer data, the vertical position of the bubble relative to some 

reference level must be known. In addition, to obtain an accurate scale factor for use in 
determining bubble surface area (or volume), it is necessary to know the precise lateral position 
of the bubble relative to the camera. In experiments of other investigators, the vertical position 
has usually been determined by simply putting a meter stick on the column wall opposite the 
camera. However, this has the disadvantage of requiring a large depth of field in order to focus 
simultaneously on both the bubble and the meter stick. This necessitates placing the camera 
further from the column, thus reducing the image size of the bubble. In the present system we 
have employed a set of mirrors to produce a virtual image of the meter stick which is 
essentially coincident with the bubble path of rise, thus minimizing the required depth of field. 
The lateral position of the bubble was obtained from a second Polaroid picture taken at right 
angles to the movie. The Polaroid camera and necessary flood lights were automatically 
triggered by a microswitch and relay attached to the moving platform for the motion picture 

camera. 

4. Data reduction 
Depending on the velocity of rise, 500-1000 frames of film were used for each run. The 

location and the dimensions of the bubble were obtained from every fifth or sixth frame, and its 
age during ascent determined from the frame number and framing rate. The bubble volume and 
surface area were determined by direct measurement of the circumference and projected 
cross-sectional areas using the observed fact that the bubbles were axisymmetric in all cases. 
The latter measurement was carried out as follows. The frame to be analyzed was projected on 
to the 61 x 61 cm screen of a microfilm editor. The screen of the editor was furnished with a 



THE DYNAMICS AND DISSOLUTION OF GAS BUBBLES IN A VISCOELASTIC FLUID 245 

hairline whose position from some preset position was proportional to a measurable voltage 
obtained from a potentiometer. The potentiometer signal was fed into a digital voltmeter which 
digitizes the signal and relays the information to an automated IBM card punch where it was 
reproduced for numerical analysis of the bubble area and volume. The measured pro- 
jected distances are converted to actual length in the experiment by calibration using a 
photograph of a grid which was suspended in the test column at a distance from the camera 
which was equal to that of the bubble. The same grid was also used to determine the amount of 
length-scale distortion from the center of the film to the edges. No measurable distortion could 
be detected. For a typical data point, approx. 60--80 equally spaced points were measured 
around the bubble surface. Final values for surface area and volume were determined by a 
numerical integration. 

D. MATERIALS 

As we have noted earlier, the present study was intended to investigate the role of 
viscoelasticity on the dynamics and dissolution of single gas bubbles. Therefore, in designing the 
experiments an attempt was made to encompass a series of ambient fluids which range from 
Newtonion to strongly viscoelastic in their rheologicai behavior. 

The Newtonian fluid used was an 89% (w/w) aqueous solution of glycerine. This specific 
concentration had previously been used by Calderbank et al. (1970) in their study of bubble 
dynamics and mass-transfer, and so was an extremely convenient choice for the present study. 

The viscoelastic fluids which we used were water and water/glycerine solutions of the 
commercial coagulation polymer, Separan AP30. An increase in viscoelasticity can be most 
easily attained by either increasing the polymer concentration in solution, or by increasing the 
sol~,ent viscosity (cf. Bruce & Schwarz 1969). In the present study the solutions in increasing 
order of viscoelasticity were 0.1%, 0.5% and 1% w/w solutions of Separan AP30 in water, and a 
solution of 0.523% (w/w) Separan AP30, 45.6% water and 53.9% glycerine. 

The zero-shear viscosity, the density and the power-law index, n, for these materials is listed 
in table 1. As discussed in section B, we shall use the power-law parameter as a measure of the 
degree of thinning of the shear viscosity. In general, the density and the zero-shear viscosity for 
each solution was checked for two samples, one from the top of the absorption column and one 
from the bottom, before and after each set of experimental runs in order to check the 
uniformity and degree of constancy of the solutions in the column. 

The properties listed in table 1 are all intrinsic parameters of the materials used. As we have 
noted in section B, it is necessary to consider the Weissenberg number and the Reynolds 
number in order to fully characterize the relative contributions of fluid elasticity. The latter 
parameters do not depend only on the intrinsic fluid properties, but also the deformation rate 
due to the flow, which may be estimated as the ratio of the characteristic velocity and length 
scales, U/2Req. The needed rheological data, namely, AI as a function of shear rate, can be 
deduced from measurements of the primary normal stress difference, N b  and the shear 
viscosity of the solutions as a function of the shear (deformation) rate, ,/. For the aqueous 
Separan solutions, the required data can be obtained from Leal et al. (1971). The data for 
Separan AP30/water/glycerine is available in Hill (1969). 

Table 1. Physical parameters of the solutions 

Liquid (25°C) v/o(p) p(g/cm s) n 

89~ Aqueous solution 1.80 1.234 1.0 
of glycerine 

0.1% AP30/H20 2.48 0.997 
0.5% AP30/H20 23.92 0.997 
1.0~ AP30/H20 123.00 0.997 
0.523% AP30-45.6% 
H20-53.9~ glycerine 280.00 1.138 

0.80+0.10 
0.72 + 0.05 
0.48 + 0.02 

0.28 + 0.02 
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E. BUBBLE SHAPES 

The main purpose of the present study was to assess the importance of the velocity 
transition on mass-transfer characteristics for single, soluble gas bubbles. With this objective in 
mind, a rather short range of bubble sizes was used, 0.18 cm <~ Req ~< 0.42 cm, centered around 

the nominal critical radius for the transition, Req- 0.3 cm, which was obtained by Leal et at. 

(1971). On the other hand, the present experiments do cover a reasonably broad spectrum of 
ambient rheological properties and include both bubbles of constant volume (air) and bubbles 
(CO2) whose volume is decreasing as a result of mass transfer. Thus, we believe that it is 
worthwhile to present some of the data which we have obtained for bubble shape and terminal 
velocity in the present study. 

We have noted in section B that the bubble shape should depend on the relative magnitudes 
of the Reynolds number, the Weissenberg number and the Weber number. Two distinct 
domains may 6e identified. For low values of the Reynolds number, Re,~ 1, the relative 
importance of shape deformation is measured by (We/Re)Wb. For high Re ~> 1, on the other 
hand, the shape would depend only on Wb. 

For the range of bubble sizes which we have considered, the four viscoelastic solutions 
actually span a range of Reynolds number from approx. 10 -3 to 10 2. The dependence of 
Reynolds number on bubble size (R,q), for each solution, is listed in table 2. The 1% 
Separan/water and the Separan/water/glycerine solutions have Re < l, while the 0.1% and 0.5% 

Separan/water solutions produc e Re > i (with the exception of the three smallest bubble sizes 
in the latter case). Also shown in table 2 is the Weissenberg number as a function of bubble size 

in the four viscoelastic solutions. 
Bubble shapes were determined from photographs in all four Separan solutions both for air 

bubbles of constant volume and for dissolving CO2 bubbles. In the latter case the images used 
were instantaneous visualizations taken directly from a motion picture of the bubble motion. 
Significantly, in the low Re cases where inertia effects were not important, no differences could 
be detected in the bubble shape fo'r a given volume between the dissolving and non-dissolving 
cases. This observation is consistent with the qualitative expectations from section B where it 
was suggested that the flow induced by the collapse process plays a secondary role in the 
instantaneous bubble dynamics, provided only that Pe ,> I. In present experiments, Pe = 

0(10 3 -  l0 6) in every case. 
A pictorial representation of bubble shape as a function of bubble size for the four 

viscoelastic solutions is presented in figure 3. The effect of fluid elasticity on shape is most 
clearly seen for the 1% Separan/water and the Separan/glycerine/water solutions where the 
Reynolds number is small. It is well-known that the equilibrium shape for a Newtonian fluid in 
the low Reynolds number range is spherical for any value of the surface tension. Thus the 
deviations from sphericity in these two cases are due entirely to the non-Newtonian charac- 
teristics of the ambient fluid. It may be seen that the main qualitative effect is an elongation in 
the direction of motion into a prolate teardrop shape. A convenient measure of the degree of 
deformation is the bubble eccentricity, which we define as its maximum width divided by its 
maximum dimension in the direction of motion (i.e. E > l for all prolate shape). The measured 
eccentricities are listed for all four solutions in table 2. It may be noted, that none of the values 
for E differs much from unity, i.e. none of the bubbles is drastically nonspherical. This 

suggests that a linear combination of the parameters, Wb and Wb(WbIRe), may be useful in 
correlating the degree of deformation from a spherical shape (cf. discussion of section B). It 
should be recalled, however, that it is generally necessary to provide a second parameter, in 
addition to We, as a measure of non-Newtonian effects (such as shear-thinning) which are 
characterized as purely-viscous, rather than elastic. Thus, if a linear combination of Wb and 
Wb(WdRe)  is to be successful in correlating eccentricity, it is most likely for the highest 
concentration solution and for the glycerine/waterlSeparan solution which are most strongly 
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elastic. The most general linear form is 

/ ~ - l - E =  A~Wb+ A2(-~e)We= Wb[Al+ A2R~ ] 

and this suggests plotting ElWb as a function of We~Re. It may be noted that this expression 
for/~ is identical with that derived rigorously by Wagner & Slattery (1972) for the limiting case 
Re < 1 and We < 1. The plot/~/Wb vs We/Re is given in figure 4. The correlation between the 1% 
Separan/water and the Separanlwater/Glycerine solutions is good, and the results are ap- 
proximately linear for We/Re < 30, as suggested above. The results for the 0.5% Separan 
solution are also nearly linear, but not well correlated with those for the more viscoelastic 
solutions. The results for 0.1% Separanlwater are not shown due to the great difference in the 
range of We/Re relative to the other cases, but are similar to the 0.5% solution in that they are more 
or less linear in We/Re, but poorly correlated with the results for the more viscoelastic solutions. 
We speculate that the poor correlation between the viscoelastically strong (1% and 0.523% in 
water/glycerine) and weak (0.1% and 0.5%) solutions is due to the relatively greater importance of 
the non-elastic, purely-viscous effects in the latter case, which are not well represented by We. The 
straight line/~1Wb = - 0.00852 + 00476 (We/Re) which is shown in figure 4 is the best-fit line for the 
1% Separan/water and 0.525% Separan/water/glycerine for We/Re < 30. 

A qualitative rationale for the prolate shapes induced by fluid elasticity was suggested 
recently by Zana & Lea/(1974). In brief, it was noted that a prolate shape is consistent with the 
general tendency of viscoelastic fluid flowsto adopt configurations which reduce the likelihood 
of very large induced stress levels. In the motion of rigid bodies, it is known that the flow is 
streamlined (with a resulting reduction in the local rates of deformation), by increasing the 
length of the region fore and aft in which the flow is significantly influenced by the body (cf. 
Zana et al. 1975). For bubbles and drops, a similar effect can also be achieved by deformation 
of the bubble shape to an elongated form. This may provide at least a partial explanation for the 
prolate teardrop shapes which are actually observed. No detailed theory of bubble shape in 
viscoelastic systems is available. 

0-20 

0 1 5  
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Figure 4. Bubble eccentricity ys Weissenberg number: Wb = Weber number, Re = Reynolds number, 
/~ = eccentricity, We = Weissenber8 number. 
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F. BUBBLE RISE VELOCITIES 

Instantaneous values were obtained for the velocity of rise for the CO., bubbles as a 
function of volume by careful frame-by-frame analysis of 16 mm motion pictures which were 
taken in conjunction with the mass transfer experiments. The framing rate for the velocity 
measurements was 16 frames/sec. The results for the 0.5% and 1% Separan/water solutions, 

and for the Separan/water/glycerine system are plotted in figures 5-7.t Also shown in these 
figures are measured values for the terminal velocity of air bubbles in the same materials. 

Finally, as a partial check on the accuracy of the present measurements, we have also included 
the data of Leal et  al .  (1971) for 0.5% and 1% Separan/water solutions. A discussion of the 

general characteristics of the velocity/volume relationship for bubbles in a viscoelastic fluid was 
presented  by us in an earlier publication, Leal & Zana (1974). Included in that discussion are 

such features as the approach to the Davies-Taylor relationship for large bubbles, and the 

decreasing influence of elasticity in the small volume regime. Here we concentrate our 

attentions on the so-called velocity transition. 
Examination of the data for air bubbles shows the existence of a large and discontinuous 

change in the terminal velocities in the 0.5% and 1% solutions, as well as the Separan/gly- 
cerine/water solution. The magnitude of the transition increases from a factor of about 4 for the 
0.5% solution to a factor of 7 for the Separan/glycerine/water case, which is also the most 
viscoelastic. The bubble volume at transition is very nearly the same in all three cases. All of 

these  features have been noted earlier, as indicated in the introduction to the present com- 
munication. 

100 

1.O 

I l I 

...... 
.: // sTo Es 

/ 

DAVIES-TAYLOR 

o AIR BUBBLE(LEAL) 
o AIR BUBBLE(ZANA) 
• CO 2 BUBBLE(ZANA) 

o.1 J J 
0.1 0,5 1.0 10 

Req(Cm) 

Fisure 5. Bubble rise velocity vs size for 0.5% AP30/Weber solution: Davies & Taylor (1950); Leal et al. 
(1971); Zana, present work. 

t Similar plots for the 89% glycerine/water solution and the 0.1% Separan/water solution may be found in Zana (1975). The 
data of Calderbank et al. in the glycerine/water system was included and shows excellent agreement with results from the 
present study. 
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Figure 6. Bubble rise velocity vs size for 1.0% AP301water solution: Davies & Taylor (1950); Leal et aL 
(1971) Zana, present work. 

Figure 7. Bubble rise velocity vs size for AP30/water/glycerine solution: Davies & Taylor (1950) Leal et al. 
(1971) Zana, present work. 

The new and significant feature in the data of figures 5-7 is the fact that no discontinuity 
could be detected in the case of the dissolving CO2 bubbles. For bubble volumes somewhat 
above and below the critical value, the measured instantaneous velocities for CO2 bubbles are 
indistinguishable from the terminal velocities obtained for air bubbles of the same volume.t It is 
only in the immediate vicinity of the transition point that the data differ significantly. In each 
case, for volumes below the critical value, the velocities for the CO2 bubbles are significantly 
larger than for the air bubbles. Since the air bubbles are known to behave as solid spheres 
before transition (cf. the comparison of bubble and solid sphere data in Leal et al. 1971), it may 
be surmised that the continuous decrease in volume of the CO2 bubbles somehow leads to a 
change in the ability of the surface to sustain tangential stress, and thus to a smooth rather than 
abrupt transition in surface conditions, with an intermediate regime of partial internal circula- 
tion. 

The difference in behavior of air and CO2 bubbles can only be explained in terms of 
transient phenomena associated directly with the boundary conditions at the bubble surface. In 
particular, neither of the bulk hydrodynamic effects associated with the changing volume (i.e. 
transient velocities due to the changing buoyancy force, or the induced radial flow), could 
possibly account for the observed differences. Dimensional analysis, including mass transfer 

tTerminal velocity data for air bubbles and instantaneous velocities for C02 bubbles were also indistinguishable in the 
glycerine/water and 0.1% Separan/water systems. 
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and associated transient hydrodynamic effects as described briefly in section B (and in detail in 
Zana & Leal 1975), shows that the induced radial velocity and the local fluid acceleration due to 
transients (i,e. du/dt) are both of O(Pe-l). Since Pe numbers in the present experiments ranged 
from 0(103) to 0(106), as noted previously, it is highly unlikely that these O(Pe-') effects could be 
significant. It may also be noted that the deviations in velocity, between the air and CO: 
bubbles, actuaUYincreases with bubble volume prior to transition, while Pe -~ decreases, thus 
providing further evidence that the O(Pe -~) hydrodynamic effects are not significant. Finally, if 
either of these bulk hydrodynamic phenomena were significant, the deviations between the CO2 
and air bubbles would not be confined to the transition region, but would also be significant for 
larger and smaller bubbles where the data show no difference between the two cases. It is 
generally conceded (see the introduction), and the present experiments provide some further 
indirect evidence, that the abrupt "transition" in terminal velocities for air bubbles with 
Req- 0.3 cm occurs due to a change in effective surface conditions from no-slip for small 
bubbles to zero tangential stress for larger bubbles. As we have indicated in the introduction, 
previous studies have strongly suggested that the increase in magnitude of the velocity change 
from approx. 3/2 in the Newtonian case, to 0(5-10) in viscoelastic fluids, can be largely 
attributed to the changes in bulk rheological properties of the ambient fluid. The present 
experiments produce no information to contradict this hypothesis. Indeed, in table 3 we have 
tabulated the magnitude of the velocity transition from all of the available studies as a function 
of the power-law parameter n and the We. Reasonable correlation can be seen for both 
parameters. This not only provides some further evidence that the bulk rheology is important, 
but also shows that both (purely-viscous) shear-thinning and elastic effects play a significant 
role in establishing the magnitude of the transition, as suggested by Leal et al. (1971). 

No physical explanation has ever been offered for the abruptness of the velocity transition 
compared to the Newtonian case. Clearly, however, any model which is proposed to account 
for the abruptness with bubbles of constant volume, must also be able to accommodate a 
continuous change in the velocity when the bubble is undergoing a continuous decrease in 
volume. Two possibilities suggest themselves, which we shall first consider in light of the 
experimentally observed abrupt transition for constant volume air bubbles. We shall call the 
first the film model. The film model may be most easily explained as the formation on small 
bubbles of a membrane-like third (polymer) phase in which the polymer molecules are highly 
entangled, or otherwise interact in such a way as to afford the film some tensile strength, The 
abrupt transition is then envisioned as resulting from a rupture of the film, deriving from an 
instability for small disturbances (i.e. infinitesimal local variations in film properties) acted upon 
by the applied tangential shear stress from the fluid. One experimental observation which 
appears consistent with this suggestion is the fact that the quantity (~U/a) at transition, 

Table 3. Velocity transition 

Solution n We 

(Velocity increase 
factor) 
UdU, 

Newtonian 
0.3% ET497 (Astarita & Apuzzo) 
0.25% J-t00 (Astarita & Apuzzo) 
0.5% AP30-H20 (this work) 
1.0% Polyox (Calderbank et al.) 
1.0% AP30-H20 (this work) 
0.5% J-IOO (Astarita & Apuzzo) 
0.7% ET497 (Astarita & Apuzzo) 
AP30-H20--glycerine 

1 .oo 0 1.50 
0.56 NA 2.22 
0.55 NA 2.35 
0.72 1.85-2.54 4.00 
0.52 NA 4.15 
0.48 2.20--3.28 5.00 
0.46 NA 5.55 
0.44 NA 5.86 
0.28 2.70-3.48 6.80 

NA Not available 
Under the column We number, first number corresponds to bubble We number just 

and the second number corresponds to the bubble We number just after the transition. 
before transition, 
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representing the magnitude of the shear stress, is essentially a constant. The only other work in 
the bubble dynamics literature which appears to be related to this concept of a bursting film was 
due to Griffith (1962) who reported that the paths of bubbles rising through glycerine containing 
oleic acid were sometimes made up of vertical rises separated by sudden lateral jumps. Griflith 
speculated that this jump stemmed from a non-symmetrical rupture of a film at the bubble 
surface. It is interesting to note that the existence of these lateral jumps was only reported for 
the oleic acid/glycerine system, and that oleic acid is a moderately long chain molecule, not 
unlike a polymer. 

The second possible model for explaining the abruptness of the velocity transition is most 
conveniently called the surfactant model. In this case the polymer molecules are viewed as 
acting in the familar manner of more common surfactant materials (cf. the recent review by 
Harper 1972), with the no-slip condition for small bubbles arising due to the existence of 
flow-induced gradients of surfactant (and hence of surface tension) on the bubble surface. With 
this model the abruptness of the transition can only be explained as being an indirect result of 
its large magnitude. In the Newtonian case where the difference between the no-slip and 
zero-shear stress conditions is only a factor of approx. 3/2 in the terminal velocity, it is 
relatively easy to establish intermediate regimes of partial circulation as represented, for 
example, by the familiar Savic cap model (cf. Davis & Acrivos 1966). In the viscoelastic fluid, 
however, the magnitude of the velocity change associated with even a partially circulating 
condition is so large that the "cap" may simply not be able to exist in an intermediate state of 
partial coverage. 

Although neither the film nor surfactant model has been subjected to any meaningful 
theoretical (or experimental) study in the present context, it is nevertheless appropriate to see 
whether either is capable of conceptual extension to the case of dissolving bubbles of 
constantly decreasing radius. Turning first to the film model, we can only say that it is difficult 
to see why a film which must be collapsing or folding onto itself (in view of the constant 
decrease in surface area) should be capable of allowing the appearance of partial internal 
circulation. The film model appears to us to be an "all or nothing model" in the sense that it can 
only allow complete circulation or complete no-slip conditions. Thus, from the point of view of 
generalization to the continuous velocity spectra of a collapsing bubble, the film model seems 
particularly deficient, In passing, it may also be noted that the mass-transfer data to be 
presented in the next section shows no sign of inhibition prior to transition, relative to the rates 
for a "clean" surface, as might be expected if one took the third-phase film concept seriously. 
In contrast to the film model, the surfactant model does appear to offer a possible mechanistic 
explanation for the observations with both constant volume and collapsing bubbles. With large 
concentrations of surfactant (polymer) in the bulk fluid (as we have in the present experiments) 
it is generally believed that at steady state the surfactant material takes on a surface 
concentration distribution with a minimum value at the front stagnation point and maximum 
(saturation) values at and near the back. The dynamics of establishing this equilibrium 
configuration are complex, involving bulk diffusion and convection of the polymer molecules to 
and from the bubble surface, absorption (and desorption) onto or off of the surface, and 
advection/diffusion of the polymer molecules on the surface itself. For large surfactant 
molecules it is generally believed that a time scale of 0(1 min) is required to attain a steady state 
surface concentration distribution (cf. Griffith 1962). When the bubble is collapsing, the 
available surface area is constantly decreasing, and so the distribution of surfactant (polymer) 
on the surface must be continuously readjusting itself. In particular, as the local surface area is 
decreased, surface concentrations of surfactant (polymer) near the rear of the bubble will 
exceed the equilibrium saturation value and desorption of surfactant (polymer) molecules must 
occur. At the same time a redistribution on the surface must occur toward a new equilibrium 
configuration. A little thought will show that this redistribution must correspond to a net 
advection of the molecules (and thus of the surface itself) from front to back, i.e. to a crude 

MF Vol, 4, No. 3=-B 



254 E. ZANA and  L. G. LEAL 

approximation of the partial slip condition at the interface. Since the characteristic collapse 
time for the bubbles in the present experiments (equal to a/U.n)) is considerably shorter (i.e. 

10 s) than the time scales of 0(1 min) for complete establishment of a new steady state, it may 
be suggested that the surface concentration distribution will always be in a transient state, thus 
leading to a surface which is continually "flowing" from front to back in pursuit of a new 
equilibrium configuration. In this latter "model" the collapse process and especially its rate of 
occurrence plays a critical role as the experiments suggest that it should. 

G. MASS TRANSFER 

We now turn to the main objective of the present work, the experimental measurement of 
mass transfer rates from single gas bubbles in viscoelastic ambient fluids. Of particular interest 
is the correspondence between rates of mass transfer and the sharp (but continuous) change in 
bubble velocity near the critical transition volume. 

The common practice among experimentalists has been to correlate mass transfer data in 
terms of the liquid phase mass transfer coefficient, kL, defined as 

dn/dt 
kL = 

A(c* - cD" 

Here A is the surface area of the bubble available for mass transfer, dn/dt the rate of change of 
bubble mass, and c* and cL the CO2 concentrations at the gas-liquid interface and in the bulk of the 
solution, respectively. More convenient for theoretical work are the dimensionless Sherwood and 
Peclet numbers. 

Pe - 2ReqU. Sh =- 2R~qkL 

where Req is the equivalent radius, U, the instantaneous velocity of rise, and DL the liquid 
phase diffusion coefficient. Whether kL or Sh is used, however, experimental determination of 
the rate of mass transfer requires measurement of 

i. the instantaneous bubble surface area; 
ii. the instantaneous bubble volume; 

iii. the rate of change of bubble volume; 
iv. the instantaneous vertical position of the bubble relative to the surface of the liquid. 

In addition, calculation of the Peclet number requires 
v. the instantaneous rise velocity. 

The quantities ii and iii are used to determine the rate of change of the moles of gas, dnldt, 

through the perfect gas law, P V  = nRT, and the instantaneous internal pressure, which is 
calculated using iv. It is assumed in this calculation that the mass transfer process occurs 
sufficiently slowly that the internal pressure is always in equilibrium with the local hydrostatic 
pressure. The quantity c* is calculated from the internal pressure using Henry's law. The 
Henry's law constant is assumed to be the same as for pure water or water/glycerine. 
Measurements by Calderbank (1970) and others indicate that this is quite a good approximation 
at the relatively low polymer concentrations considered here. 

Among the experimentally measured quantities, the most difficult to determine accurately 
are the bubble surface area and volume. As we have noted earlier, these quantities were 
determined by numerical integration using a cross-sectional photograph of the bubble, and the 
assumption of axisymmetry (a good assumption in our system). Most previous studies have 
used a more crude method in which volume and area are calculated from the measured "major" 
axes of the bubble assuming its shape to be spheroidal. In the Newtonian case such a procedure 
may yield quite accurate results, especially for small deviations from sphericity. However, in 
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the viscoelastic fluids considered here the bubble shape is clearly not spheroidal so that an 
approximation of this type could lead to considerable errors in the calculated mass-transfer 
rates. Calderbank et al. (1970) used a modified version of the spheroidal geometry ap- 
proximation. To estimate the magnitude of error introduced by the spheroid assumption we 
calculated the ratio of the directly measured (exact) to approximated surface areas. The 
calculated approximate values were consistently larger than the exact measured ones; however, 
the errors are smaller than might be expected, approx. 8 to 10%. In addition, the "exact" values 
are within 5-20% of the area of a sphere with the same volume. In spite of these surprisingly 
reasonable approximate results we shall use the "exact" measured values of surface area in the 
present work. 

Before discussing the experimental data on bubble mass transfer rates, it is useful to recall 
the various theoretical results which are available. We consider here only those expressions 
which are relevant to Pe ~ 1. For Re ~ 1, and a Newtonian ambient fluid, Levich (1962) showed 
that 

for a rigid sphere, and 

Sh = 0.991 Pe 113 (Pe >> 1, Re ,~ 1) [1] 

Sh = 0.65 Pe ~12 (Pe ~, 1, Re ,~ 1) [2] 

for a spherical bubble with free circulation. For a circulating sphere at large Reynolds number, 
Boussinesq (1905) used the pontential flow solution for the velocity field to obtain 

Sh = l.13 Pe 1/2 ( P e ~  l, Re.~ l). [3] 

The latter result is, of course, not restricted to a Newtonian fluid. As we have noted earlier, if 
Re is sufficiently large that the inertia terms in the equation of motion are dominant over 
viscous or elastic contributions, the velocity field will be the potential flow solution independent 

of the bulk theological properties. Thus, for sufficiently large bubbles in either the Newtonian 
or viscoelastic fluids, one would expect to find data correlation according to [3], provided the 
bubble shape remained spherical. Even for nonspherical shapes, however, the general result 

Sh = cPel/2 [4] 

will hold, with the constant c depending on bubble shape. No comprehensive theory of bubble 
mass transfer in viscoelastic fluids is available at low Reynolds numbers. The reason is simply 
that no comprehensive theory has yet been developed for the velocity field and bubble 
dynamics. The only results available are (like the velocity field modifications) limited to small 
deviations from a Newtonian fluid. For a power-law fluid with [n - II ~ 1, Hirose & Moo-Young 
(1969) have shown that the Sherwood number for a circulating bubble in the creeping flow 
regime is given by 

_ 4n(n - l)]tl2peV2" (Re ,~ 1 ,  Pe ~, 1) [5] 
Sh=0.65  1 2 n + l  .I 

More recently, Moo-Young & Hirose (1972) considered the small We limit for a Maxwell fluid in 
the creeping flow regime to show 

Sh = 0.65{1 + O. 16 We2}pe u2 (Re ~ 1, Pe ~ 1) [6] 

for We ,~ 1. Neither [5] nor [6] is directly applicable to the strongly non-Newtonian solutions 
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used in the present study in view of the restrictions on In - II and We. However, they can at 

least be examined for qualitative trends which may be useful outside their strict range of 
validity. In this sense, [5] predicts an enhancement in the mass transfer rate over its Newtonian 
value as a result of shear dependence of viscosity. Furthermore, the enhancement increases 
monotonically with decrease of the flow index, n. The predictions of [6] are similar to those of 
[5]. It shows an increase in the mass-transfer rate with increasing viscoelasticity, i.e. with We 

number. 
Measured mass transfer rates for CO2 bubbles in 89% glycerine-11% water solution are 

shown in figure 8. Also shown in figure 8 is the experimental data of Calderbank et aL for the 
same system. The agreement between the two is excellent. This is significant, because the 
Calderbank et al. (1970) mass transfer data were obtained in a "closed" system where the 
bubble volume remains constant during its rise through the column. We have noted previously, 
in section C, that this could lead to significant differences in mass transfer rate when compared 
to an "open" system where the bubble volume is allowed to vary. The difference between an 
"open" and a "closed" system could be important for cases in which the flow induced by the 
interface motion is significant compared to the translational motion of the bubble. In gly-  

c e r i n e / w a t e r  solution the mass transfer rates are very small due to extremely small liquid phase 
diffusivity, DL, and hence the interface motion is negligibly small. As a result, in the absence of 
significant transient effects associated with the interface itself (as seem to occur in the 
viscoelastic case--see previous section), the "closed" and "open" systems are expected to 
yield comparable results in the glycerine/water solution. For completeness, we note that the 
agreement between the rise velocities of air bubbles and CO2 bubbles measured in this work, 
and CO2 bubbles obtained by Calderbank et al. (1970) is excellent (cf. figure 6 of Zana 1975). 
We have also plotted the theoretical expressions [I-3] in figure 8. Agreement between the data 
and [3] is good for the larger bubbles where Re is moderate. 

The mass transfer data for the 0.1, 0.5, 1.0% Separan AP30/water solutions and the 
Separan/water/glycerine solution are shown in figure 9-12, plotted as Sh against Pe. Also shown 
in each figure are the most appropriate of the theoretical expressions [1-5]. 

Initially, a point of surprise regarding these data is the fact that they appear smooth over the 

10 4 

103 

Sh= 1.13Pe 1/2 ; Re~,1 

° ~ p e l / 2  ; Re~;1 

10 2 ~ .991Pe 1/3 : Re<l 

O ZANA 
O CALDERBANK 

I I 
1C105 106 107 

Pe 

Figure 8. Sh Number vs Pe number for 89% glycerinelwater solution: Zana, present work; Calderbank et 
aL (1970). 
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Figure 9. Sh Number vs Pe number for 0.1% AP30/water solution. 
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Figure 10. Sh Number vs Pe number for 0.5% AP30/water solution. 

whole range of Pc, with no apparent region of rapid (though continuous) increase as found in 
the velocity data of the preceding section. It is thus important to point out that acorresponding 
transition actually does occur, which would be evident if Sh were plotted as a Junction of R,q 
instead of Pc. Pe involves U and so itself increases sharply in the transition region. This causes 
the corresponding sharp increase in Sh to be spread out horizontally, thus producing the 
smooth curves of figures 9-12. 

For all of the systems studied here Pe~ l0 3, so that one of the restrictions of [1-6] is 
automatically satisfied. As we have noted in section D, the four viscoelastic solutions ~all into 
two groups With respect to Re. In the higher Re group, glycerine/water and 0.5% Separan/water 
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Figure 11. Sit Number vs Pe number for 1.0% AP301water solution. 
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Figure 12. Sh Number vs Pe number for AP30/water/glycerine solution. 

have Reynolds numbers ranging from - 3 to 20, while 0.1% Separan/water ranges from ~ 15 to 70. 
Our comparison of the experimental data for the Newtonian glycerine/water system with[3] 
showed good agreement for the larger bubble sizes where the Re is largest. It should be noted, 
however, that the bubble shapes differed substantially from spherical so that this agreement may be 
fortuitous. Indeed, for the two comparable viscoelastic systems (0.1 and 0.5%), the data cross over 
the high Reynolds number theoretical expression to values which are 10-13% larger in the 0.1% 
solution, and 22-25% greater for 0.5% Separan/water. We shall discuss this apparent enhancement 
in mass transfer rates in more detail later in this section. However, we may note that we believe the 
enhancement to be a genuine product of the viscoelasticity and sbear-thinning properties of the 

fluid. 
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For the 1% AP30/glycerine/water and AP30/glycerine/water solutions, Re varies from 10 -3 

to 0.5, and the experimental data must be compared with the low Reynolds number theories, as 
indicated in figures 11 and 12. For the 1% AP30/water solution, the data start between the 
theoretical curves for solid and freely circulating spheres, and increase to values, for the largest 
bubbles, which are substantially greater than either the Newtonian or power-law expressions [2] 
and [5]. The intermediate values obtained for the smallest bubbles are actually consistent with 
the velocity data of the preceding section. It was noted there that the velocities for the CO: 
bubbles in viscoelastic solutions are always greater than the corresponding velocities of air 
bubbles for Req < R entice, and it was argued that this increase could be due to a partial internal 
circulation for the CO2 bubbles. The mass transfer data are consistent with this hypothesized 
existence of partial circulation, since they lie halfway between the no-slip and freely circulating 
theoretical predictions. It is also significant, as we pointed out in the previous section, that the 
polymer molecules at the bubble surface do not appear to directly inhibit COs transfer to the 
surrounding fluid. Turning to figure 12, it may be noted that the mass-transfer data for 
AP30/water/glycerine lie strictly above the predictions of [2] and [5]. This is again consistent 
with the velocity data for CO2 bubbles in the same solution, figure 7, which show that the 
smallest bubbles represented in the mass transfer data (Req = 0.20 cm) have a velocity very 
close to the velocity of the fully circulating, post-transition air bubbles. 

Table 4 shows the percentage increase in experimental mass transfer rates over the 
predicted Newtonian values both for the four viscoelastic solutions used in the present study 
and also for all other available mass transfer data in non-Newtonian fluids. Also listed are Re, n, 
and either We or We/Re, depending upon where Re < 1 or Re > 1, respectively. Finally, we 
have also listed the percentage increase above the prediction of the In - 11 '~ 1 power-law theory for 
those cases where Re < 1. It will be noted that the various cases are listed in order of 
decreasing power-law index, n. 

Turning first to the four cases studied in the present work, it may be seen that the 10-13% 
and 22-25% increases for 0.1 and 0.5% AP30/water correlate well with an increasing level both 
of shear-thinning (n) and of effective fluid elasticity (We/Re). Likewise for 1% AP30/water and 
AP30/water/glycerine where n is further decreased, the increase in mass transfer rate above the 
Newtonian value is also further increased from 56 to 60 and 60 to 65%, respectively, and 
ordered with respect both to n and to the appropriate measure of elasticity, We, for the low Re 
cases. 

Considering all of the cases which are listed, we may note 
(i) The degree of increase in mass transfer rates correlates well with the power-law 

index, n, for all cases except the 0.14% Carbopol solution studied by Hirose & Moo-Young 
(1969). We believe that the lack of correlation in this one case is extremely significant since 
all of the solutions listed are fully viscoelastic except for Carbopol which is a shear-thinning, 
purely-viscous liquid. The implication is that the fully-viscoelastic values of mass-transfer 
rate represent the additive contribution of shear-thinning and separate elastic effects. In 
other words, one cannot, in general, expect correlation of the enhancement of mass transfer 
rates and n, without also taking into account tile appropriate measure of importance of 
elastic effects. For all solutions except 0.1 and 0.5% AP30/water, this, is We. For these two 
cases, one must use (We~Re) as the measure of elasticity since the Reynolds numbers of tf~e 
bubble motion are moderate to large. 

(ii) The increase in mass transfer rates is greater than predicted by the power-law model 
of Hirose & Moo-Young (1969). Although this theory is strictly valid only for In - 11 ~ 1, it 
was suggested by Calderbank et al. (1970) that the experimental data even in strongly 
viscoelastic liquids could be predicted by using the power-law theory with measured values 
of n. Since the power-law model represents only the effect of a shear-thinning viscosity, it 
was thus suggested that the influence of elasticity was of negligible importance. This resuR 
is, of course, surprising in view of the potential influence of elasticity on the flow patterns, 
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and is also at odds with the prediction for small We given by [6]. The present experimental 
results show that increases of as much as 25% can be obtained above the power-law theory 
when the ambient fluid is fully viscoelastic. Furthermore, these increases correlate strongly 
with the relevant measure of the fluid's elasticity, i.e. We or We/Re in every case. 

4. CONCLUSIONS 

(i) It is shown through dimensional analysis and examination of experimental data that the 
effect of fluid elasticity on the rise velocities and mass transfer rates can be correlated 
in terms n and the We number when Re ~ 1, and n and (We/Re) when Re ~ 1. 

(ii) It is found experimentally that the effect of elasticity on the bubble shape is to stretch it 
along the streamlines to a prolate teardrop shape. This shape of bubble is consistent 
with the streamline pictures of a viscoelastic liquid moving past a solid sphere. 

(iii) It is shown for the first time that the discontinuous increase in velocity of rise 
corresponding to a change from rigid to free surface conditions only occurs for 
non-dissolving (constant volume) air bubbles, and that the transition is smooth for 
dissolving (varying volume) C02 bubbles. Two qualitative models relating to the 
abruptness of the velocity transition for air bubbles, are discussed in terms of the 
observed difference between constant volume and collapsing bubbles. 
abruptness of the velocity transition for air bubbles, are discussed in terms of the 
observed difference between constant volume and collapsing bubbles. 

(iv) Mass transfer rates were measured for one Newtonian and four visco-elastic liquids. The 
mass-transfer rates are found to be significantly enhanced as a result of viscoelasticity. The 
increase in mass transfer rates over the corresponding Newtonian values are found to 
increase with increasing shear dependence of  viscosity and/or elasticity. However, it is 
shown that the shear dependence of viscosity cannot alone account for the large increase in 
mass transfer rates, and hence that elasticity has to be included in any successful analysis 
of the mass transfer data for viscoelastic fluids. 
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